1. McGlory, C., Gorissen, S. H., Kamal, M., Bahniwal, R., Hector, A. J., Baker, S. K., ... & Phillips, S. M. (2019). Omega‐3 fatty acid supplementation attenuates skeletal muscle disuse atrophy during two weeks of unilateral leg immobilization in healthy young women. The FASEB Journal, 33(3), 4586-4597: https://faseb.onlinelibrary.wiley.com/doi/abs/10.1096/fj.201801857RRR
2. Heileson, J. L., Machek, S. B., Harris, D. R., Tomek, S., de Souza, L. C., Kieffer, A. J., ... & Funderburk, L. K. (2023). The effect of fish oil supplementation on resistance training-induced adaptations. Journal of the International Society of Sports Nutrition, 20(1), 2174704: https://www.tandfonline.com/doi/full/10.1080/15502783.2023.2174704
3. Herbst, E. A. F., Paglialunga, S., Gerling, C., Whitfield, J., Mukai, K., Chabowski, A., ... & Holloway, G. P. (2014). Omega‐3 supplementation alters mitochondrial membrane composition and respiration kinetics in human skeletal muscle. The Journal of physiology, 592(6), 1341-1352: https://physoc.onlinelibrary.wiley.com/doi/epdf/10.1113/jphysiol.2013.267336
4. Thielecke, F., & Blannin, A. (2020). Omega-3 fatty acids for sport performance—are they equally beneficial for athletes and amateurs? a narrative review. Nutrients, 12(12), 3712: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7760705/
5. Żebrowska, A., Mizia-Stec, K., Mizia, M., Gąsior, Z., & Poprzęcki, S. (2015). Omega-3 fatty acids supplementation improves endothelial function and maximal oxygen uptake in endurance-trained athletes. European journal of sport science, 15(4), 305-314: https://www.tandfonline.com/doi/abs/10.1080/17461391.2014.949310
6. Zanella, L., & Vianello, F. (2023). Potential of Microalgae as Functional Foods Applied to Mitochondria Protection and Healthy Aging Promotion. Nutraceuticals, 3(1), 119-152: https://www.mdpi.com/1661-3821/3/1/10
7. Kavyani, Z., Musazadeh, V., Fathi, S., Faghfouri, A. H., Dehghan, P., & Sarmadi, B. (2022). Efficacy of the omega-3 fatty acids supplementation on inflammatory biomarkers: An umbrella meta-analysis. International Immunopharmacology, 111, 109104: https://www.sciencedirect.com/science/article/abs/pii/S1567576922005884
8. El-Hafidi, M., Correa, F., & Zazueta, C. (2020). Mitochondrial dysfunction in metabolic and cardiovascular diseases associated with cardiolipin remodeling. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1866(6), 165744: https://www.sciencedirect.com/science/article/pii/S0925443920300892
9. Herbst, E. A. F., Paglialunga, S., Gerling, C., Whitfield, J., Mukai, K., Chabowski, A., ... & Holloway, G. P. (2014). Omega‐3 supplementation alters mitochondrial membrane composition and respiration kinetics in human skeletal muscle. The Journal of physiology, 592(6), 1341-1352: https://pubmed.ncbi.nlm.nih.gov/24396061/
10. de Oliveira, M. R., Nabavi, S. F., Nabavi, S. M., & Jardim, F. R. (2017). Omega-3 polyunsaturated fatty acids and mitochondria, back to the future. Trends in food science & technology, 67, 76-92: https://www.sciencedirect.com/science/article/abs/pii/S0924224416306045
11. Stonehouse, W., Conlon, C. A., Podd, J., Hill, S. R., Minihane, A. M., Haskell, C., & Kennedy, D. (2013). DHA supplementation improved both memory and reaction time in healthy young adults: a randomized controlled trial. The American of Clinical Nutrition, 97(5), 1134-1143: https://pubmed.ncbi.nlm.nih.gov/23515006/
12. Satizabal, C. L., Himali, J. J., Beiser, A. S., Ramachandran, V., Van Lent, D. M., Himali, D., ... & Seshadri, S. (2022). Association of red blood cell omega-3 fatty acids with MRI markers and cognitive function in midlife: the framingham heart study. Neurology, 99(23), e2572-e2582: https://pubmed.ncbi.nlm.nih.gov/36198518/
13. VanDusseldorp, T. A., Escobar, K. A., Johnson, K. E., Stratton, M. T., Moriarty, T., Kerksick, C. M., ... & Mermier, C. M. (2020). Impact of varying dosages of fish oil on recovery and soreness following eccentric exercise. Nutrients, 12(8), 2246: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7468920/
14. Żebrowska, A., Mizia-Stec, K., Mizia, M., Gąsior, Z., & Poprzęcki, S. (2015). Omega-3 fatty acids supplementation improves endothelial function and maximal oxygen uptake in endurance-trained athletes. European journal of sport science, 15(4), 305-314: https://pubmed.ncbi.nlm.nih.gov/25176010/
15. McGlory, C., Calder, P. C., & Nunes, E. A. (2019). The influence of omega-3 fatty acids on skeletal muscle protein turnover in health, disuse, and disease. Frontiers in nutrition, 6, 144: https://www.frontiersin.org/articles/10.3389/fnut.2019.00144/full
16. Corder, K. E., Newsham, K. R., McDaniel, J. L., Ezekiel, U. R., & Weiss, E. P. (2016). Effects of short-term docosahexaenoic acid supplementation on markers of inflammation after eccentric strength exercise in women. Journal of sports science & medicine, 15(1), 176: https://pubmed.ncbi.nlm.nih.gov/26957941/
17. Tsuchiya, Y., Yanagimoto, K., Nakazato, K., Hayamizu, K., & Ochi, E. (2016). Eicosapentaenoic and docosahexaenoic acids-rich fish oil supplementation attenuates strength loss and limited joint range of motion after eccentric contractions: a randomized, double-blind, placebo-controlled, parallel-group trial. European journal of applied physiology, 116, 1179-1188: https://pubmed.ncbi.nlm.nih.gov/27085996/
18. Heileson, J. L., & Funderburk, L. K. (2020). The effect of fish oil supplementation on the promotion and preservation of lean body mass, strength, and recovery from physiological stress in young, healthy adults: a systematic review. Nutrition Reviews, 78(12), 1001-1014: https://academic.oup.com/nutritionreviews/article/78/12/1001/5850121?login=false
19. Da Silva, E. P., Nachbar, R. T., Levada-Pires, A. C., Hirabara, S. M., & Lambertucci, R. H. (2016). Omega-3 fatty acids differentially modulate enzymatic anti-oxidant systems in skeletal muscle cells. Cell Stress and Chaperones, 21, 87-95: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4679743/